I’d say roughly 1,000 to 100,000, depending on format.
Edit: Raw ASCII (7-bit) could give you up to ~half a million.
Edit 2: According to Randall Munroe (to lazy to find the source), you could theoretically store one word letter per bit. That would give us up to ten two million books.
UTF-8 and ASCII are normally already 1 character per byte.
With great file compression, you could probably reach 2 characters per byte, or one every 4 bits.
One character every bit is probably impossible. Maybe with some sort of AI file compression, using an AI’s knowledge of the English language to predict the message.
Edit: Wow, apparently that already exists, and it can achieve even higher of a compression ratio, almost 10:1! (with 1gb of UTF-8 (8 bit) text from Wikipedia)
bellard.org/nncp/
If an average book has 70k 5 character words, this could compress it to around 303 kb, meaning you could fit 1.6 million books in 64 gb.
You can get a 2tb ssd for around $70. With this compression scheme you could fit 52 million books on it.
I’m not sure if I’ve interpreted the speed data right, but It looks like it would take around a minute to decode each book on a 3090.
It would take about a year to encode all of the books on the 2tb ssd if you used 50 a100s (~$9000 each). You could also use 100 3090s to achieve around the same speed (~$1000 each)
52 million books is around the number of books written in the past 20 years, worldwide. All stored for $70 (+$100k of graphics cards)
I’d say roughly 1,000 to 100,000, depending on format.
Edit: Raw ASCII (7-bit) could give you up to ~half a million.
Edit 2: According to Randall Munroe (to lazy to find the source), you could theoretically store one
wordletter per bit. That would give us up totentwo million books.One letter per bit? You’d need some crazy effective compression algorithm for that, because a bit is 1 or 0. Did you mean byte?
UTF-8 and ASCII are normally already 1 character per byte. With great file compression, you could probably reach 2 characters per byte, or one every 4 bits. One character every bit is probably impossible. Maybe with some sort of AI file compression, using an AI’s knowledge of the English language to predict the message.
Edit: Wow, apparently that already exists, and it can achieve even higher of a compression ratio, almost 10:1! (with 1gb of UTF-8 (8 bit) text from Wikipedia) bellard.org/nncp/
If an average book has 70k 5 character words, this could compress it to around 303 kb, meaning you could fit 1.6 million books in 64 gb.
You can get a 2tb ssd for around $70. With this compression scheme you could fit 52 million books on it.
I’m not sure if I’ve interpreted the speed data right, but It looks like it would take around a minute to decode each book on a 3090. It would take about a year to encode all of the books on the 2tb ssd if you used 50 a100s (~$9000 each). You could also use 100 3090s to achieve around the same speed (~$1000 each)
52 million books is around the number of books written in the past 20 years, worldwide. All stored for $70 (+$100k of graphics cards)
There’s something comical about the low low price of $70 (+$100k of graphics cards) still leaving out the year of time it will take.
Well I guess you could sacrifice a portion for an index system and just decode the one you’re trying to read