It counts because the adapter slot cannot be used for something else.
I don’t understand this objection. I mean, sure, if you put an audio block in a slot for the headphone jack, it can’t be used for something else, but let’s say they omitted a slot and just put a fixed-into-the-case headphone jack there. I assume that you wouldn’t be happier with that.
I could maybe understand it if normally a headphone jack on a laptop went somewhere other than where the slots would be, but on my Thinkpad, it’s where the slots are on a Framework laptop.
They just give you the option to have or not have a headphones jack.
let’s say they omitted a slot and just put a fixed-into-the-case headphone jack there.
Or let’s not because that isn’t what happened in the 13 inch model.
Point is: Placing hope into a Framework phone with a headphone jack is IMO misplaced based on Framework’s most recent track record. Not even Apple got rid of headphone jacks in MacBook Air.
As someone with the 13, I would prefer the 6 slots on the 16 to the 4+headphone jack on the 13.
The best part of the modular slots is you can swap the side the jack is on for whatever works best or have it on both. (Through the magic of buying two of them.) Also if something goes wrong with the jack it’s significantly easier to replace.
As someone with the 13, I would prefer the 6 slots on the 16 to the 4+headphone jack on the 13.
If you think that getting rid of the headphone jack would result in more slots, you’re out of touch with reality. There would be an additional slot on the other side of the chassis where there is no headphone jack, so 5 overall. But there aren’t. The headphone jack has absolutely nothing to do with the number of slots. Audio output is a tiny component.
Well… yeah. The 13 is smaller. I bought it before the 16 was a thing. The geometry as designed doesn’t allow 3 banks of slots.
I’m just saying, the 16 having 6 total slots, one or more of which can be an audio jack, is an upgrade. I have the audio jack module anyway specifically because it occasionally works better to have the jack on the right side of the laptop instead of the left, and then the built-in jack is vestigial.
I don’t even use built-in headphone jacks anymore. I use external DACs with 2.5, 4.4 and quarter inch. Good thing for me that I can get an extra port while others can use a headphone jack still.
I don’t know if both could provide the same amount of power, and I’d bet – given that laptops don’t – that the phone would only be able to charge off one.
USB ports aren’t perfectly interchangeable today. If they can’t be made to be, I kind of wish that at least USB would have a set of standards for indicating power-in capable ports and ports by wattage capability. Like, reserve one color or symbol or something for one, one for another. Right now, device manufacturers just do whatever and sometimes don’t indicate what is what. I mean, yeah, it’s great that they’re backwards compatible, but when you have ports that don’t all behave the same, it’d be nice for it to be immediately-obvious what they do.
Also, while I’m dreaming, I’d like power-pack and battery capacity to be listed in watt-hours rather than amp-hours, given (a) that voltage isn’t universally the same and (b) that what people care about is about how long something can be run (“I have an N watt device and an M watt-hour battery…”).
given that laptops don’t – that the phone would only be able to charge off one.
My personal Framework 13 can charge from either the left or right side USB-C ports, and my work Lenovo Thinkpad can charge from either the dedicated USB-C slot, or the USB-C dock port. Point is, as USB-C gains more widespread adoption, limiting a device to only using one port for charging is becoming much less common.
That said, Framework does point out that not all the expansion bays can deliver/receive the same amount of power and they recommend (at least for the 13) to only use the rear ports for charging.
A Framework phone with 2 modular Framework sockets would be amazing. I don’t care if it’s thick. Make it repairable and support Linux Phone OSes like postmarketOS and I would absolutely buy it.
I kind of wonder how viable it’d be to make a product that consists of:
A strong smartphone case, with structurally-strong “dock” connector at the bottom.
A “dock” – maybe in a couple different sizes – that links to this, has a pass-through USB-C hub, and adds stuff like a headphones jack. Maybe stick an integrated powerbank into any free space.
Smartphones don’t have standard dimensions at all, resulting in a zillion cases out there, but having the case with a standard “dock” attachment as a separate part would mean that you don’t have to build a million variations on the dock.
There are existing “put the smartphone in a dock” products, but they’re aimed at putting the phone on a desk, using it like a laptop. I dunno if there’s something comparable for just holding it. I haven’t seen anything like that.
From a purely-electrical standpoint, USB-C permits for a lot of devices to be added. But physically, on a smartphone, that means carrying other boxes. A “dock” that just extends the height of the phone would avoid that.
If the only thing you want is a headphones jack on a smartphone, I’d probably just get a small USB-C-to-1/8"-TRS adapter and leave it attached to the headphones; they can be pretty small.
I would like a phone that has a removable battery, user replaceable screen, and expandable storage. I think Framework would do well to add one or two of their modular slots on the phone since phones already have USB-C support. I would also love to see a phone keyboard similar to the PinePhone keyboard case but using USB-C instead of I2C. Such a case could also incorporate a USB-C dock, providing more Framework module slots or at least additional USB ports, video outputs, an extended capacity battery (using USB-PD to charge itself as well as the phone), and of course also being a tiny keyboard clamshell that fits in your pocket. It could also be nice if the phone could easily detach from said case for taking calls, as the PinePhone keyboard replaces the back cover and does not separate easily when needed.
phone keyboard similar to the PinePhone keyboard case
This doesn’t buy you a single device with a physical keyboard, but if you’re willing to tolerate a separate keyboard device, you can get those in smartphone form factor.
There are full-size keyboards that fold down to the size of a cell phone and fit in your pocket:
That won’t solve your issue if what you want to do is to be walking down the street and tapping away, but if the concern is intensive text-typing sessions when you’re sitting down, that can work.
There are also tiny keyboards that you can hold in your hand that’ll talk to the phone via Bluetooth:
I have some of those tiny keyboards, but the PinePhone keyboard case is far more convenient to use as a mini on the go PC than a separate keyboard. If such an all in one option existed for more powerful hardware it would be amazing. I love the idea of a phone that doubles as a true pocket laptop including connectivity options.
I love the idea of a phone that doubles as a true pocket laptop including connectivity options.
I haven’t looked recently, but you might try looking at Japan. They were way ahead of the US in the palmtop form factor. I remember boggling at what they had on the market – albeit expensive – about twenty years ago.
Japan has also been well below the US in personal computer ownership. My guess as to explaining those two facts – lack of personal computers, but availability of palmtops – is that a big part of available computer use time in Japan might be when someone is on mass transit. They’re willing to pay a premium for something usable there.
googles
I’m not seeing anything likely in a quick search, but there are some more-recent “UMPC” form factor devices from various companies that look kinda similar. Larger than the palmtops, so might be what you’re thinking of.
I have seen the GPD devices before and if they were a bit smaller (phone sized) and had cell capability maybe that would be a good option. As is, they are not small enough to be in a separate category than the Steam Deck IMO, and I already have a Steam Deck. I also like the idea of the keyboard being detachable as sometimes the phone form factor is desirable, like when holding it up to your ear.
calls - includes decent audio (looking at you Pinephone Pro)
texts - MMS group chat is a must
data
like 2 Android apps with low requirements (for me, it’s Okta and Slack for work)
all day battery doing the above
If I could get that and be able to run full desktop applications when docked, I’m sold. The Pinephone Pro looks super cool, but I’m not sure if MMS works and battery life is apparently pretty bad. I don’t even need a decent camera, though gaming a camera is useful to capture QR codes and whatnot.
I’m looking at getting a Pixel to use GrapheneOS, but I’d buy a framework phone with good hardware if it was available.
I can think of several good reasons to use 1/8" TRS headphones (though as I point out in a lower comment, specifically for smartphones, space is at an extreme premium and I think that the majority of people probably don’t want to spend the space on an integrated headphones jack; it’d be better to use a small external adapter there):
But for the general case, not on smartphones, places where I have the space to stick a 1/8" TRS port, I am not very enthusiastic about using USB as an audio port.
1/8" TRS is a well-established standard. I mean, pretty much every device can handle it. USB for audio is in a number of places, but not even close to the level of 1/8" TRS.
1/8" TRS has been around forever. It’s electrically-compatible with 1/4" TRS, which has been around even longer.
The original 1⁄4 inch (6.35 mm) version descends from as early as 1877 in Boston when the first telephone switchboard was installed[9] or 1878, when an early switchboard was used for the first commercial manual telephone exchange[10][11] in New Haven created by George W. Coy.
USB is a young pup and already, physical USB-A ports are being phased out in favor of USB-C ports. I very much doubt that USB-C is going to be around ~150 years down the road the way that TRS has been. I can use a pair of headphones from the 1970s just fine with the latest device, and I can use an elderly radio from the 1970s with a new pair of headphones.
USB is a lot more complicated than 1/8" TRS. It’s got sleep states, trees, power consumption negotiation. That’s all room for things to break in interesting ways. I have, for example, a USB hygrometer/thermometer that sporadically triggers kernel errors on my computer when plugged in. I have a mouse that, for some reason, when plugged into a USB hub, uses a lower polling rate if plugged in when the system boots up (albeit not if unplugged and replugged). I have a USB audio DAC/ADC that decided to cut out the other day, for God knows what reason, until it was restarted. My last computer’s motherboard had a USB controller that supported a more-limited-than-required-by-protocol-USB tree size and had random devices not work if a sufficient number of devices were plugged in. None of this exists with 1/8" TRS.
Security. Same idea. I’ve got enough attack vectors into my devices as-is. People have definitely attacked bugs in USB stacks before; IIRC, that’s historically been part of how they attacked DRM on some consoles. 1/8" TRS is a dumb protocol, but that makes it safe. Same issue with USB for charging, though at least there you can get a “power-only” cable. You can’t have an “audio-only” cable.
USB sticks the DAC on the headphones. Why? Headphones don’t last that long; they’re disposable items. Put the non-disposable bits where they won’t die. A DAC can last pretty much forever. I have gone through many headphones over the years. I have never had a sound card or on-motherboard DAC or dedicated DAC die. The closest I came was once ripping the 1/8" TRS output on a DAC loose, which I could solder back into place. I have two USB-to-1/8"-TRS DAC/ADCs sitting on the shelf by my desk. They’ll probably be perfectly good twenty years from now.
Sampling rate issues. Can’t come up on TRS, because the DAC/ADC is on the device side. One of my USB DACs (this intended for professional audio) only supports a fixed sampling rate, the one at which it does internal processing; that makes sense, as a pro doesn’t want to have some device introducing resampling into their audio chain. Another, consumer one, can’t support a sampling rate as high as the professional one; it relies on the computer to figure out and do resampling if resampling has to happen above that rate. You can have software that doesn’t work with a given pair of USB headphones because it doesn’t like the headphone DAC’s supported sampling rates; I’ve seen that before. If I have a pair of 1/8" TRS headphones, they work everywhere. It doesn’t matter whether whether they’re new or old or intended for the professional market or consumer market. Plug 'em in, they work.
I have one wired audio-emitting device – a pair of elderly Logitech USB speakers, not headphones – that has an integrated DAC. For some reason, the engineers who did that appear to have decided to make the volume control on that linear in electrical power rather than in perceptual loudness, which means that the vast majority of the volume scale does very little and there’s a tiny range that has a large impact. I don’t want to deal with that kind of craziness on some cheap pair of headphones.
Latency. 1/8" TRS devices normally – unless you’re intentionally building something into the system – have zero latency, because the DAC on the device is directly electrically driving the membrane on the speaker. Every time one sticks higher-level protocols in, it’s an opportunity for some bright-eyed, bushy-tailed engineer to start cramming more shit into the pipeline that adds latency. TVs are a great example of this – they used to have no latency, and then someone figured out that they could show ads and do other processing on the feed and that that’d be easier if they had a buffer of some video frames, and so they started inducing latency, unlike a computer monitor. Now you have “gaming modes” on TVs that try to mitigate the problem which had never originally been an actual issue with dumb TVs.
There’s an entirely-separate world of audio software and hardware for professionals who want to do real-time audio processing (on Linux, JACK; I have a USB ADC and some audio cards that permit direct passthrough of input audio to output) to try to avoid all the points in the pipeline that various consumer audio devices and software have inserted latency.
That doesn’t matter for some uses, like an MP3 player. It’s not the end of the world for a phone call. But it’s really obnoxious for some uses. With 1/8" TRS, I have no latency. With USB, I have God-knows-what latency.
Durability. 1/8" TRS is more-rugged than USB-C. I’ve damaged both before by pulling on cables at right angles, but micro-USB, mini-USB, and USB-C are more-fragile. That being said, I will give USB this: the damage tends to be worse on the cable side, as the plug is flimsy and will tend to give out before the socket on the device, whereas with TRS you can more-readily mess up the device. I would be open to the idea that having a standard magnetic breakaway connector would be more sane than either 1/8" TRS or any existing USB standard.
There are only three decent reasons that I can see to use USB headphones for the general case (like, not the extreme-space-constraint situation that smartphones see):
It provides power. Some people want active noise cancellation on their headsets. If you want to do ANC, you’re gonna need power one way or another. 1/8" TRS doesn’t have a standard for that (with XLR, for condenser mics, there’s a 48 volt phantom power convention that was added, but TRS doesn’t have it). AFAICT, devices that do this with a 1/8" TRS interface either rely on a second USB wire for power or use batteries.
When initially plugging in a 1/8" TRS plug, one shorts connectors and it can make a loud noise on the speaker membrane. Not an issue with USB, because the speaker membrane isn’t in that pipeline.
1/8" TRS doesn’t specify a single impedance everywhere. You can get very-high-impedance headphones that a DAC with limited output power can’t drive at a reasonable volume, even with the volume all the way up. That isn’t usually an issue for most people, but USB avoids the issue.
EDIT: Apparently I lied on the phantom power argument for using USB; according to WP, there are 1/8" TRS devices that do take phantom power (or something comparable; sounds like it’s not, strictly-speaking, “phantom power”):
Plug-in-power (PiP) is the low-current 3–5 V supply provided at the microphone jack of some consumer equipment, such as portable recorders and computer sound cards. It is also defined in IEC 61938.[16] It is unlike phantom power since it is an unbalanced interface with a low voltage (around +5 volts) connected to the signal conductor with return through the sleeve; the DC power is in common with the audio signal from the microphone. A capacitor is used to block the DC from subsequent audio frequency circuits. It is often used for powering electret microphones, which will not function without power. It is suitable only for powering microphones specifically designed for use with this type of power supply. Damage may result if these microphones are connected to true (48 V) phantom power through a 3.5 mm to XLR adapter that connects the XLR shield to the 3.5 mm sleeve.[17] Plug-in-power is covered by Japanese standard CP-1203A:2007.[18]
Also, regarding the power argument – USB power can be a source of noise leaking into what you hear.
USB power can be incredibly, mind-bogglingly dirty. I couldn’t believe it the first time I watched some video of some guy with an oscilloscope showing it. I guess it makes sense – I mean, keeps USB controllers and hub prices cheap – but there’s all kinds of electrical devices that have to deal with it. Anyway, point is, it’s the responsibility of the USB device containing the DAC to have a power supply that cleans that up sufficiently before feeding the DAC. It turns out that…they don’t necessarily do that. I have one USB-powered (not using a USB audio interface, or switching away from my computer’s USB bus wouldn’t be an option) mixer with 1/4" TRS output where using the USB power bus off my computer for power resulted in perceptible audio artifacts, humming and such.
This appears to be something of a not-uncommon problem, as I see various references to it online for other devices:
Some of you guys may be aware of my posts and other’s in the Topping D10 review thread. It seems that this DAC, like many audio devices that get their [power from the USB Bus, suffer from some noise coming from the USB port itself.
From my own experience, plugging the DAC into a Raspberry Pi 3B (+5v PSU and Ethernet connected) dropped the noise considerably compared to any port on the PC.
And if I can hear it, then I guarantee that there are USB audio devices that are inserting all kinds of garbage into the signal going out the output that are maybe less-egregious.
I wound up avoiding the problem with my mixer (well, at least to the point where I couldn’t hear it) by sticking the mixer onto an isolated USB charger, not on my PC’s USB tree. Now, yes, you can make a fancy power supply that avoids that, and it’s fair to say that the guys that engineered the mixer should have used a better power supply if they were gonna use USB power. But if you’ve got some guys engineering headphones and are under pressure to try to make the things as cheap as possible, because headphones are a disposable item, not to mention as light as possible because they’re gonna sit on your head, I’m not sure I’d bet on how much expense and weight they’re gonna put into the power supply feeding the DAC.
I haven’t tried quantifying how the power supplies on various USB DACs perform, though I would suggest that in a world where people are using USB audio rather than 1/8" TRS, given that you have headphone reviewers that cover things like frequency response, it’d be interesting to have a device that intentionally screws with the USB input power voltage and then have an oscilloscope or something attached to the leads coming off the magnet driving the speaker’s membrane and see just exactly how much glop from USB power is leaking through to the membrane at various dick-with-the-voltage patterns.
EDIT: Oh, and I forgot one other point. Cable length. 1/8" TRS cares very little about cable length. If you want a 200 foot cable, sure, go for it. USB, especially newer and faster forms, is pretty restrictive on cable length. I decided, a few years back, to move my PC to the other side of the room to reduce noise at my chair and had fun discovering that a number of current PC cable standards are not incredibly friendly to long runs. USB couldn’t communicate without repeaters or an optical bridge, DisplayPort had visible artifacts and occasionally saw the screen go black and need to re-handshake, etc.
The maximum recommended cable length for USB 2.0, is five meters, or around 16 feet. That’s actually the longest maximum length of any standard, passive USB cable specification, with USB 1.0 cables restricted to just three meters.
You may find some USB 2.0 cables that run longer than 5m, but they’ll need to be made with a thick wire gauge to ward off signal loss and interference at anything much past that maximum. Alternatively, you can run longer USB 2.0 connections by bridging two USB 2.0 cables with a powered USB hub.
How long can a USB 3.0/3.1 Cable be?
USB 3.0 and 3.1 Gen 1 cables don’t have an official maximum length, but their recommended maximum is around 2-3 meters in length or around nine feet. Like USB 2.0, you can extend this with a powered USB hub, potentially linking a few together to extend your run, but there are far better solutions for longer USB 3.0 cable runs.
The maximum length for USB 3.0 and 3.1 was maintained into the final USB 3.0 Type-A specification, known as USB 3.2 Gen 2. It was also mirrored in the higher-performing USB 3.2 Gen 2x2 Type-C connections, which also had a nine-foot maximum cable length.
However, USB4 cables, which leverage the USB Type-C connector but can transmit data at up to 40 Gbps, only have a maximum recommended cable length of 0.8 meters or around 2.6 feet. That goes for both the existing 40 Gbps cables and the USB4 80Gbps spec cables which will see greater use in the coming years.
These cables can transmit data at a much greater bandwidth than their USB 3.2 Gen 2x2, or earlier counterparts, which means the cables need to be made of a higher quality to ensure the data is fully transmitted. Unfortunately, that also means signal attenuation is a bigger problem, hence the shorter maximum cable runs for USB4 cables.
You forgot that 3.5mm is a stupid connector that makes you pass charged metal pieces over the connector to plug it in. You can’t power an anc chip or a dsp with it because it can’t do power delivery. That’s how you get headphones sounding different based on whether they are turned on
At the time, there weren’t really many good options for replacement devices.
Using the charging port means listening to music and charging at the same time wasn’t possible.
Now we have split-cable dongles for power banks, and we have wireless charging when possible. It’s better but it’s not great; both have downsides, and accessories are more $.
Do they make type C headphones with a powerbank in them? Do I want a lithium battery that large on my head?
There aren’t many upsides for the consumer or the environment. Still seems to me like this isn’t even a lateral move. Internal components have gotten smaller and more efficient since, so that space could be reclaimed. I really don’t need my phone to be that thin, a phono jack next to the charging port would be just fine. The only real downside might be waterproofing but if you can make it work for the type C port…
The only real downside might be waterproofing but if you can make it work for the type C port…
I’ve heard that argument against having a 1/8" TRS port on smartphones before, and I don’t buy it. Yes, there are lots of devices where there’s just air between the connector and the rest of the electronic device, so water entering through the port can flow into the rest of the device…but there is no fundamental requirement imposed that requires devices to be designed like that. It’d be entirely-reasonable to seal it off, have the port external to the rest of the phone, have no way for water to pass from one area to the other.
There are some types of data or electrical connections for which you cannot do that, where the problem is that water’s conductivity causes problems for a port itself, and the interface isn’t designed to handle things being shorted, but that shouldn’t be an issue for 1/8" TRS. Hell, you short its contacts just plugging the device in.
While I personally like having a headphones jack and would be quite happy with a larger smartphone with a larger battery and headphones jack, a lot of people do care a lot about size. I’ve seen women in particular complaining about the fact that their clothing often has limited or small pockets, and large smartphones don’t play well with that.
The headphones jack was never designed to be incredibly space efficient.
That means smartphones have extremely limited space. Plus, if you want it to be modular – which is how Framework permits for the option to have a headphones jack on their laptops – you need even more space if you want to maintain structural strength of the phone.
I think that the best bet, if you carry headphones with 1/8" TRS plug, is to just leave a USB-C adapter plugged into the end, as that places the space on the headphones end, where there isn’t a space constraint:
Cool. How about a repairable phone with a headphone jack? I’ll be a day one buyer.
The Framework 16 notebook doesn’t even have a headphone jack, only a USB-C to jack adapter.
It’s one of the slot in ones though right? so it doesn’t really count - it effectively integrated.
It counts because the adapter slot cannot be used for something else. It is different with the smaller 13 inch model.
I don’t understand this objection. I mean, sure, if you put an audio block in a slot for the headphone jack, it can’t be used for something else, but let’s say they omitted a slot and just put a fixed-into-the-case headphone jack there. I assume that you wouldn’t be happier with that.
I could maybe understand it if normally a headphone jack on a laptop went somewhere other than where the slots would be, but on my Thinkpad, it’s where the slots are on a Framework laptop.
They just give you the option to have or not have a headphones jack.
Or let’s not because that isn’t what happened in the 13 inch model.
Point is: Placing hope into a Framework phone with a headphone jack is IMO misplaced based on Framework’s most recent track record. Not even Apple got rid of headphone jacks in MacBook Air.
As someone with the 13, I would prefer the 6 slots on the 16 to the 4+headphone jack on the 13.
The best part of the modular slots is you can swap the side the jack is on for whatever works best or have it on both. (Through the magic of buying two of them.) Also if something goes wrong with the jack it’s significantly easier to replace.
If you think that getting rid of the headphone jack would result in more slots, you’re out of touch with reality. There would be an additional slot on the other side of the chassis where there is no headphone jack, so 5 overall. But there aren’t. The headphone jack has absolutely nothing to do with the number of slots. Audio output is a tiny component.
Well… yeah. The 13 is smaller. I bought it before the 16 was a thing. The geometry as designed doesn’t allow 3 banks of slots.
I’m just saying, the 16 having 6 total slots, one or more of which can be an audio jack, is an upgrade. I have the audio jack module anyway specifically because it occasionally works better to have the jack on the right side of the laptop instead of the left, and then the built-in jack is vestigial.
It not being mega-ultra-built-in doesn’t matter.
deleted by creator
I don’t even use built-in headphone jacks anymore. I use external DACs with 2.5, 4.4 and quarter inch. Good thing for me that I can get an extra port while others can use a headphone jack still.
Modular ports would be great. I’d love to have two USB ports on a phone rather than a USB and headphone jack.
I don’t know if both could provide the same amount of power, and I’d bet – given that laptops don’t – that the phone would only be able to charge off one.
USB ports aren’t perfectly interchangeable today. If they can’t be made to be, I kind of wish that at least USB would have a set of standards for indicating power-in capable ports and ports by wattage capability. Like, reserve one color or symbol or something for one, one for another. Right now, device manufacturers just do whatever and sometimes don’t indicate what is what. I mean, yeah, it’s great that they’re backwards compatible, but when you have ports that don’t all behave the same, it’d be nice for it to be immediately-obvious what they do.
Also, while I’m dreaming, I’d like power-pack and battery capacity to be listed in watt-hours rather than amp-hours, given (a) that voltage isn’t universally the same and (b) that what people care about is about how long something can be run (“I have an N watt device and an M watt-hour battery…”).
My personal Framework 13 can charge from either the left or right side USB-C ports, and my work Lenovo Thinkpad can charge from either the dedicated USB-C slot, or the USB-C dock port. Point is, as USB-C gains more widespread adoption, limiting a device to only using one port for charging is becoming much less common.
That said, Framework does point out that not all the expansion bays can deliver/receive the same amount of power and they recommend (at least for the 13) to only use the rear ports for charging.
I’m pretty sure that a USB hub would work at least on Android, giving you as many ports as you want.
Repairable, open phone, you can load whatever OS you want. A phone that is more akin to a computer than a smartphone. A pinephone, but better.
If you don’t care about 3.5mm a FairPhone comes pretty close to that description.
A Framework phone with 2 modular Framework sockets would be amazing. I don’t care if it’s thick. Make it repairable and support Linux Phone OSes like postmarketOS and I would absolutely buy it.
I kind of wonder how viable it’d be to make a product that consists of:
A strong smartphone case, with structurally-strong “dock” connector at the bottom.
A “dock” – maybe in a couple different sizes – that links to this, has a pass-through USB-C hub, and adds stuff like a headphones jack. Maybe stick an integrated powerbank into any free space.
Smartphones don’t have standard dimensions at all, resulting in a zillion cases out there, but having the case with a standard “dock” attachment as a separate part would mean that you don’t have to build a million variations on the dock.
There are existing “put the smartphone in a dock” products, but they’re aimed at putting the phone on a desk, using it like a laptop. I dunno if there’s something comparable for just holding it. I haven’t seen anything like that.
From a purely-electrical standpoint, USB-C permits for a lot of devices to be added. But physically, on a smartphone, that means carrying other boxes. A “dock” that just extends the height of the phone would avoid that.
If the only thing you want is a headphones jack on a smartphone, I’d probably just get a small USB-C-to-1/8"-TRS adapter and leave it attached to the headphones; they can be pretty small.
I would like a phone that has a removable battery, user replaceable screen, and expandable storage. I think Framework would do well to add one or two of their modular slots on the phone since phones already have USB-C support. I would also love to see a phone keyboard similar to the PinePhone keyboard case but using USB-C instead of I2C. Such a case could also incorporate a USB-C dock, providing more Framework module slots or at least additional USB ports, video outputs, an extended capacity battery (using USB-PD to charge itself as well as the phone), and of course also being a tiny keyboard clamshell that fits in your pocket. It could also be nice if the phone could easily detach from said case for taking calls, as the PinePhone keyboard replaces the back cover and does not separate easily when needed.
This doesn’t buy you a single device with a physical keyboard, but if you’re willing to tolerate a separate keyboard device, you can get those in smartphone form factor.
There are full-size keyboards that fold down to the size of a cell phone and fit in your pocket:
https://www.amazon.com/s?k=folding+keyboard
That won’t solve your issue if what you want to do is to be walking down the street and tapping away, but if the concern is intensive text-typing sessions when you’re sitting down, that can work.
There are also tiny keyboards that you can hold in your hand that’ll talk to the phone via Bluetooth:
https://www.amazon.com/s?k=handheld+keyboard
You can get phone cases that hold both such a keyboard and the phone:
https://www.amazon.com/s?k=phone+case+keyboard
I have some of those tiny keyboards, but the PinePhone keyboard case is far more convenient to use as a mini on the go PC than a separate keyboard. If such an all in one option existed for more powerful hardware it would be amazing. I love the idea of a phone that doubles as a true pocket laptop including connectivity options.
I haven’t looked recently, but you might try looking at Japan. They were way ahead of the US in the palmtop form factor. I remember boggling at what they had on the market – albeit expensive – about twenty years ago.
Japan has also been well below the US in personal computer ownership. My guess as to explaining those two facts – lack of personal computers, but availability of palmtops – is that a big part of available computer use time in Japan might be when someone is on mass transit. They’re willing to pay a premium for something usable there.
googles
I’m not seeing anything likely in a quick search, but there are some more-recent “UMPC” form factor devices from various companies that look kinda similar. Larger than the palmtops, so might be what you’re thinking of.
https://gpd.hk/gpdpocket3
https://store.planetcom.co.uk/
I have seen the GPD devices before and if they were a bit smaller (phone sized) and had cell capability maybe that would be a good option. As is, they are not small enough to be in a separate category than the Steam Deck IMO, and I already have a Steam Deck. I also like the idea of the keyboard being detachable as sometimes the phone form factor is desirable, like when holding it up to your ear.
Yup. All I need from a phone is:
If I could get that and be able to run full desktop applications when docked, I’m sold. The Pinephone Pro looks super cool, but I’m not sure if MMS works and battery life is apparently pretty bad. I don’t even need a decent camera, though gaming a camera is useful to capture QR codes and whatnot.
I’m looking at getting a Pixel to use GrapheneOS, but I’d buy a framework phone with good hardware if it was available.
I would pay a stupid amount of money for one that sits on the back and slides out the side in landscape.
Why not just use type c headphones?
The 3.5mm thing has always baffled me, it feels like complaining your pc doesn’t have a VGA port, except the thing you connect costs like a fiver
I can think of several good reasons to use 1/8" TRS headphones (though as I point out in a lower comment, specifically for smartphones, space is at an extreme premium and I think that the majority of people probably don’t want to spend the space on an integrated headphones jack; it’d be better to use a small external adapter there):
But for the general case, not on smartphones, places where I have the space to stick a 1/8" TRS port, I am not very enthusiastic about using USB as an audio port.
1/8" TRS is a well-established standard. I mean, pretty much every device can handle it. USB for audio is in a number of places, but not even close to the level of 1/8" TRS.
1/8" TRS has been around forever. It’s electrically-compatible with 1/4" TRS, which has been around even longer.
https://en.wikipedia.org/wiki/Phone_connector_(audio)
USB is a young pup and already, physical USB-A ports are being phased out in favor of USB-C ports. I very much doubt that USB-C is going to be around ~150 years down the road the way that TRS has been. I can use a pair of headphones from the 1970s just fine with the latest device, and I can use an elderly radio from the 1970s with a new pair of headphones.
USB is a lot more complicated than 1/8" TRS. It’s got sleep states, trees, power consumption negotiation. That’s all room for things to break in interesting ways. I have, for example, a USB hygrometer/thermometer that sporadically triggers kernel errors on my computer when plugged in. I have a mouse that, for some reason, when plugged into a USB hub, uses a lower polling rate if plugged in when the system boots up (albeit not if unplugged and replugged). I have a USB audio DAC/ADC that decided to cut out the other day, for God knows what reason, until it was restarted. My last computer’s motherboard had a USB controller that supported a more-limited-than-required-by-protocol-USB tree size and had random devices not work if a sufficient number of devices were plugged in. None of this exists with 1/8" TRS.
Security. Same idea. I’ve got enough attack vectors into my devices as-is. People have definitely attacked bugs in USB stacks before; IIRC, that’s historically been part of how they attacked DRM on some consoles. 1/8" TRS is a dumb protocol, but that makes it safe. Same issue with USB for charging, though at least there you can get a “power-only” cable. You can’t have an “audio-only” cable.
USB sticks the DAC on the headphones. Why? Headphones don’t last that long; they’re disposable items. Put the non-disposable bits where they won’t die. A DAC can last pretty much forever. I have gone through many headphones over the years. I have never had a sound card or on-motherboard DAC or dedicated DAC die. The closest I came was once ripping the 1/8" TRS output on a DAC loose, which I could solder back into place. I have two USB-to-1/8"-TRS DAC/ADCs sitting on the shelf by my desk. They’ll probably be perfectly good twenty years from now.
Sampling rate issues. Can’t come up on TRS, because the DAC/ADC is on the device side. One of my USB DACs (this intended for professional audio) only supports a fixed sampling rate, the one at which it does internal processing; that makes sense, as a pro doesn’t want to have some device introducing resampling into their audio chain. Another, consumer one, can’t support a sampling rate as high as the professional one; it relies on the computer to figure out and do resampling if resampling has to happen above that rate. You can have software that doesn’t work with a given pair of USB headphones because it doesn’t like the headphone DAC’s supported sampling rates; I’ve seen that before. If I have a pair of 1/8" TRS headphones, they work everywhere. It doesn’t matter whether whether they’re new or old or intended for the professional market or consumer market. Plug 'em in, they work.
I have one wired audio-emitting device – a pair of elderly Logitech USB speakers, not headphones – that has an integrated DAC. For some reason, the engineers who did that appear to have decided to make the volume control on that linear in electrical power rather than in perceptual loudness, which means that the vast majority of the volume scale does very little and there’s a tiny range that has a large impact. I don’t want to deal with that kind of craziness on some cheap pair of headphones.
Latency. 1/8" TRS devices normally – unless you’re intentionally building something into the system – have zero latency, because the DAC on the device is directly electrically driving the membrane on the speaker. Every time one sticks higher-level protocols in, it’s an opportunity for some bright-eyed, bushy-tailed engineer to start cramming more shit into the pipeline that adds latency. TVs are a great example of this – they used to have no latency, and then someone figured out that they could show ads and do other processing on the feed and that that’d be easier if they had a buffer of some video frames, and so they started inducing latency, unlike a computer monitor. Now you have “gaming modes” on TVs that try to mitigate the problem which had never originally been an actual issue with dumb TVs.
There’s an entirely-separate world of audio software and hardware for professionals who want to do real-time audio processing (on Linux, JACK; I have a USB ADC and some audio cards that permit direct passthrough of input audio to output) to try to avoid all the points in the pipeline that various consumer audio devices and software have inserted latency.
That doesn’t matter for some uses, like an MP3 player. It’s not the end of the world for a phone call. But it’s really obnoxious for some uses. With 1/8" TRS, I have no latency. With USB, I have God-knows-what latency.
Durability. 1/8" TRS is more-rugged than USB-C. I’ve damaged both before by pulling on cables at right angles, but micro-USB, mini-USB, and USB-C are more-fragile. That being said, I will give USB this: the damage tends to be worse on the cable side, as the plug is flimsy and will tend to give out before the socket on the device, whereas with TRS you can more-readily mess up the device. I would be open to the idea that having a standard magnetic breakaway connector would be more sane than either 1/8" TRS or any existing USB standard.
There are only three decent reasons that I can see to use USB headphones for the general case (like, not the extreme-space-constraint situation that smartphones see):
It provides power. Some people want active noise cancellation on their headsets. If you want to do ANC, you’re gonna need power one way or another. 1/8" TRS doesn’t have a standard for that (with XLR, for condenser mics, there’s a 48 volt phantom power convention that was added, but TRS doesn’t have it). AFAICT, devices that do this with a 1/8" TRS interface either rely on a second USB wire for power or use batteries.
When initially plugging in a 1/8" TRS plug, one shorts connectors and it can make a loud noise on the speaker membrane. Not an issue with USB, because the speaker membrane isn’t in that pipeline.
1/8" TRS doesn’t specify a single impedance everywhere. You can get very-high-impedance headphones that a DAC with limited output power can’t drive at a reasonable volume, even with the volume all the way up. That isn’t usually an issue for most people, but USB avoids the issue.
EDIT: Apparently I lied on the phantom power argument for using USB; according to WP, there are 1/8" TRS devices that do take phantom power (or something comparable; sounds like it’s not, strictly-speaking, “phantom power”):
https://en.wikipedia.org/wiki/Phantom_power
Also, regarding the power argument – USB power can be a source of noise leaking into what you hear.
USB power can be incredibly, mind-bogglingly dirty. I couldn’t believe it the first time I watched some video of some guy with an oscilloscope showing it. I guess it makes sense – I mean, keeps USB controllers and hub prices cheap – but there’s all kinds of electrical devices that have to deal with it. Anyway, point is, it’s the responsibility of the USB device containing the DAC to have a power supply that cleans that up sufficiently before feeding the DAC. It turns out that…they don’t necessarily do that. I have one USB-powered (not using a USB audio interface, or switching away from my computer’s USB bus wouldn’t be an option) mixer with 1/4" TRS output where using the USB power bus off my computer for power resulted in perceptible audio artifacts, humming and such.
This appears to be something of a not-uncommon problem, as I see various references to it online for other devices:
https://www.audiosciencereview.com/forum/index.php?threads/cleaning-usb-for-bus-powered-audio-devices-discuss.5899/
And if I can hear it, then I guarantee that there are USB audio devices that are inserting all kinds of garbage into the signal going out the output that are maybe less-egregious.
I wound up avoiding the problem with my mixer (well, at least to the point where I couldn’t hear it) by sticking the mixer onto an isolated USB charger, not on my PC’s USB tree. Now, yes, you can make a fancy power supply that avoids that, and it’s fair to say that the guys that engineered the mixer should have used a better power supply if they were gonna use USB power. But if you’ve got some guys engineering headphones and are under pressure to try to make the things as cheap as possible, because headphones are a disposable item, not to mention as light as possible because they’re gonna sit on your head, I’m not sure I’d bet on how much expense and weight they’re gonna put into the power supply feeding the DAC.
I haven’t tried quantifying how the power supplies on various USB DACs perform, though I would suggest that in a world where people are using USB audio rather than 1/8" TRS, given that you have headphone reviewers that cover things like frequency response, it’d be interesting to have a device that intentionally screws with the USB input power voltage and then have an oscilloscope or something attached to the leads coming off the magnet driving the speaker’s membrane and see just exactly how much glop from USB power is leaking through to the membrane at various dick-with-the-voltage patterns.
EDIT: Oh, and I forgot one other point. Cable length. 1/8" TRS cares very little about cable length. If you want a 200 foot cable, sure, go for it. USB, especially newer and faster forms, is pretty restrictive on cable length. I decided, a few years back, to move my PC to the other side of the room to reduce noise at my chair and had fun discovering that a number of current PC cable standards are not incredibly friendly to long runs. USB couldn’t communicate without repeaters or an optical bridge, DisplayPort had visible artifacts and occasionally saw the screen go black and need to re-handshake, etc.
https://www.cablematters.com/Blog/USB-C/usb-cable-max-length
Alas I have but one upvote to give.
You forgot that 3.5mm is a stupid connector that makes you pass charged metal pieces over the connector to plug it in. You can’t power an anc chip or a dsp with it because it can’t do power delivery. That’s how you get headphones sounding different based on whether they are turned on
I have two sections in my above comment talking about power delivery over 1/8" TRS.
At the time, there weren’t really many good options for replacement devices.
Using the charging port means listening to music and charging at the same time wasn’t possible.
Now we have split-cable dongles for power banks, and we have wireless charging when possible. It’s better but it’s not great; both have downsides, and accessories are more $.
Do they make type C headphones with a powerbank in them? Do I want a lithium battery that large on my head?
There aren’t many upsides for the consumer or the environment. Still seems to me like this isn’t even a lateral move. Internal components have gotten smaller and more efficient since, so that space could be reclaimed. I really don’t need my phone to be that thin, a phono jack next to the charging port would be just fine. The only real downside might be waterproofing but if you can make it work for the type C port…
I’ve heard that argument against having a 1/8" TRS port on smartphones before, and I don’t buy it. Yes, there are lots of devices where there’s just air between the connector and the rest of the electronic device, so water entering through the port can flow into the rest of the device…but there is no fundamental requirement imposed that requires devices to be designed like that. It’d be entirely-reasonable to seal it off, have the port external to the rest of the phone, have no way for water to pass from one area to the other.
There are some types of data or electrical connections for which you cannot do that, where the problem is that water’s conductivity causes problems for a port itself, and the interface isn’t designed to handle things being shorted, but that shouldn’t be an issue for 1/8" TRS. Hell, you short its contacts just plugging the device in.
While I personally like having a headphones jack and would be quite happy with a larger smartphone with a larger battery and headphones jack, a lot of people do care a lot about size. I’ve seen women in particular complaining about the fact that their clothing often has limited or small pockets, and large smartphones don’t play well with that.
The headphones jack was never designed to be incredibly space efficient.
That means smartphones have extremely limited space. Plus, if you want it to be modular – which is how Framework permits for the option to have a headphones jack on their laptops – you need even more space if you want to maintain structural strength of the phone.
I think that the best bet, if you carry headphones with 1/8" TRS plug, is to just leave a USB-C adapter plugged into the end, as that places the space on the headphones end, where there isn’t a space constraint:
This is minimalist, optimizes for size:
https://www.amazon.com/Digital-Headphone-Adapter-Converter-Samsung/dp/B07KJ87HYJ/
This has a passthrough port, so that it doesn’t tie up your USB-C port:
https://www.amazon.com/Headphone-Charger-Adapter-Splitter-Charging/dp/B0CSKF9XSF/
This has both a headphones and microphone port:
https://www.amazon.com/ZOOAUX-Microphone-Adapter-Splitter-Compatible/dp/B0CDX38TRN/
This has a headset jack, if you use a headset with integrated microphone:
https://www.amazon.com/Vcddom-Premium-Adapter-Headphone-Compatible/dp/B087CS4T4G/