I think a more concise answer to the second one would be; it depends on where you decide to round, but as you run it, it approaches 100%, or 99.99 repeating (which is 100%)
The screenshot displays 3 decimal places, which is the the precision I used. As it turns out, even just rounding to the nearest integer still requires checking more numbers than we even have the primes enumerated for (e^200 or 7x10^86)
I think a more concise answer to the second one would be; it depends on where you decide to round, but as you run it, it approaches 100%, or 99.99 repeating (which is 100%)
The screenshot displays 3 decimal places, which is the the precision I used. As it turns out, even just rounding to the nearest integer still requires checking more numbers than we even have the primes enumerated for (e^200 or 7x10^86)
Ah, ok yeah that makes sense.