• deegeese@sopuli.xyz
    link
    fedilink
    English
    arrow-up
    34
    arrow-down
    2
    ·
    1 year ago

    I’m as much a nuclear skeptic as anyone, but while fusion solves neither the time or budget problems of fission, it does solve the meltdown and waste problems.

    • superminerJG@lemmy.world
      link
      fedilink
      English
      arrow-up
      10
      ·
      1 year ago

      The reaction used in fusion generators is:

      [2]H + [3]H -> [4]He + n

      Since tritium is usually produced from lithium in situ, you add:

      [6]Li + n -> [3]H + [4]He.

      The only radioactive thing here is tritium, and it’s mostly confined to the reactor. Also, tritium isn’t nearly as bad as fission waste.

        • superminerJG@lemmy.world
          link
          fedilink
          English
          arrow-up
          8
          ·
          edit-2
          1 year ago

          I mean, if you could extract any tritium from the reactor cavity, but it’s probably going to get burned up instantly.

          The reactions I showed add up to this overall reaction. Neutrons simply serve as a catalyst.

          [2]H + [6]Li -> 2 [4]He

          On the bright side, fusion reactors produce helium as a byproduct, which might make party balloons cheaper.

    • ryrybang@lemmy.world
      link
      fedilink
      English
      arrow-up
      14
      arrow-down
      7
      ·
      1 year ago

      It improves the waste issue, doesn’t really solve it. A dirty, little-discussed secret about fusion power.

      If we had a bunch of fusion plants go live, we’d soon have tons and tons of radioactive containment wall material to bury/store somewhere. Including all the special handling requirements that you need with fuel rod waste. I think fusion plants would actually create more waste than a comparable fission plant, at least as far as tons of radioactive material.

      The benefit is that waste would be lighter isotopes and degrade faster. So you have more physical material to worry about but only need to worry about it for ~100 years, not thousands.

      • barsoap@lemm.ee
        link
        fedilink
        English
        arrow-up
        8
        ·
        edit-2
        1 year ago

        The decommissioning plans for ITER more or less literally say “let stand there as-is for 100 years, then demolish as usual”. Fisson plants, which don’t use less concrete, need to be taken apart small section by small section, each single piece analysed for radiation and sorted into long- or short-term storage. Fusion plants are only marginally more of a headache safety-wise than the radiology department of a hospital and you don’t generally hear people complaining about those.

    • sunbeam60@lemmy.one
      link
      fedilink
      English
      arrow-up
      2
      arrow-down
      6
      ·
      1 year ago

      So does 4 other fission power plants we can imagine. Now sure why we’re so Darwindamned fixated on fusion - I suspect it’s just the name.

      • deegeese@sopuli.xyz
        link
        fedilink
        English
        arrow-up
        9
        ·
        1 year ago

        Fissionable isotopes are yet another nonrenewable fuel.

        Hydrogen is the most abundant element in the universe.

        • sunbeam60@lemmy.one
          link
          fedilink
          English
          arrow-up
          6
          ·
          edit-2
          1 year ago

          With reprocessing, which we already do, and new Gen IV power plants, there’s enough energy to last us thousand of years with currently known resources. And that’s before we start scooping it out of the water.

          • Brainsploosh@lemmy.world
            link
            fedilink
            English
            arrow-up
            1
            ·
            1 year ago

            That’s assuming a lot of ifs resolve our way, and without power needs increasing. It’s more sustainable than coal/gas/oil for sure, but with current energy development needs it’s barely long term (IIRC about 60-140 years)

            Also, on centuries timescale, we will need to find more fissiles in space. And according to our current understanding of the universe, they should be quite rare, especially compared to hydrogen.

            Basically, figuring out fusion power would solve our needs for the first level on the Kardashev scale, and has the potential to be portable fuel for the rest of the lifespan of the universe.

            • sunbeam60@lemmy.one
              link
              fedilink
              English
              arrow-up
              1
              ·
              1 year ago

              My aim is not to stop research on fusion - just making the point that we know how to do nuclear and it seems to me we are letting perfect be the enemy of good.