• trash80@lemmy.dbzer0.com
        link
        fedilink
        English
        arrow-up
        7
        arrow-down
        2
        ·
        1 year ago

        Light doesn’t travel the same speed in water or glass as in a vacuum.

        In a medium, light usually does not propagate at a speed equal to c; further, different types of light wave will travel at different speeds. The speed at which the individual crests and troughs of a plane wave (a wave filling the whole space, with only one frequency) propagate is called the phase velocity vp. A physical signal with a finite extent (a pulse of light) travels at a different speed. The overall envelope of the pulse travels at the group velocity vg, and its earliest part travels at the front velocity vf.

        https://en.wikipedia.org/wiki/Speed_of_light#In_a_medium

        • Neato@kbin.social
          link
          fedilink
          arrow-up
          6
          ·
          1 year ago

          That’s light as an aggregate wave. Photons, actual light, always travel at c. What’s happening in a medium is the rapid absorption and readmission of photons. The probability of admission is based on structure of material causing things like lens or mirrors to work.

          You can think of it as the photons having to jump between platforms before the can continue running at c.

        • there1snospoon@ttrpg.network
          link
          fedilink
          English
          arrow-up
          4
          arrow-down
          1
          ·
          edit-2
          1 year ago

          But doesn’t relativity explicitly state that c is the speed of light in a vacuum, and travelling through other mediums explicitly changes and is explained by relativity?

          I am 100% a layman and do not know the answer.

    • marcos@lemmy.world
      link
      fedilink
      English
      arrow-up
      4
      arrow-down
      3
      ·
      1 year ago

      No, they don’t. They can get absorbed and re-emitted, and the space they are moving though can compress sideways. But they can’t make curves at all.

        • marcos@lemmy.world
          link
          fedilink
          English
          arrow-up
          3
          ·
          1 year ago

          That’s basically all that refraction is. A dead giveaway is that light doesn’t move at the speed of light in them.

        • Neato@kbin.social
          link
          fedilink
          arrow-up
          3
          arrow-down
          1
          ·
          edit-2
          1 year ago

          Yes.

          Don’t think about individual photons. Think about billions of them with destructive and constructive interference. The probabilities of all the sitting l additive waves of light.