Uranium is $128.30/kg
After enrichment, conversion and fabrication that’s $3400/kg for 4.95% fuel.
At 36-45MWd/kg and a net thermal efficiency of 25% or $12.5/MWh up front.
With a 90 month lead time (72 month fuel cycle and 18 months inventory) at 3% this is $16.2/MWh
There’s no need to consider nuclear. The power storage requirements for a 100% - epsilon renewable grid are vastly smaller than the amount of battery that will be deployed to EVs in the next few years.
https://www.nature.com/articles/s41467-021-26355-z
Those batteries can be used either after they degrade to the point where the EV needs a new one, or while still in the EV if a small fraction of owners participate in V2G.
Additionally the accessible uranium reserves cannot make a significant impact on the world’s energy requirements.
In 8 million tonnes of accessible natural uranium there are about 56,000 tonnes of U235. Fissioning all of this yields around 5000EJ of thermal energy Exhausting all techniques of reprocessing and breeding that have actually ever worked, there’s about 10,000EJ.
The world used 620EJ of primary energy last year so the absolute most generous interpretation is there are 16 years of accessible fission energy, In any realistic scenario it’s much, much less.
The amount of energy that can be provided via fission with current technology isn’t a meaningful contribution and can’t be deployed in a meaningful timeframe.
There may be niches where GW scale LWRs are a much better choice than other options. On the off chance they do crop up, what little uranium 235 there is should be reserved for those.
It still sounds crazy to most people : it’s a long way to go that should be paved for speeding up modern consciousness.