At Terraform Industries we believe in a future where energy is universally cheap, clean, and abundant. We’re developing a scalable electrolyzer to deliver the cheapest possible green hydrogen…
They tested a small aircraft for a few minutes at a time (using batteries for flight times that are low for batteries) before crashing it and it’s nowhere near production. Compared to 2 seater electric planes in production for years, or actually serious passenger planes, ZeroAvia is a joke.
There are less clownish hydrogen plane projects, but they are flight testing redundant hardware with full ICE main systems.
Not unless the batteries have enough capacity to last all day. And hydrogen refuelling stations are being built at bus depots because obviously they are. Do you imagine carbon-fuel busses head to their local filling station when they run low?
Then you’re adding a redundant $5-10million high capacity filling station to the depot cost on top of the other costs. Also you need more depots because hydrogen busses (at least the ones that don’t get at least half their energy from a battery) have lower range than the top end battery busses.
As I said before. Op charging and pantographs are being abandoned already because overnight charging is more than sufficient. 0.7-1kWh per km is perfectly doable and 500kWh batteries even without current gen LMFP (which reduces weight by 30% vs lfp in use now) has no impact on payload, any route that isn’t non-stop can run all day with just a single charge during lunch breK. 1000kWh raises the floor or reduces clearance (but still less than hydrogen) and the bus will run for longer than a driver can legally.
Realistically most batteries are in the 250-350kWh range because more is unnecessary.
The only people still pushing hydrogen busses are platinum miners or oil and gas shills.
Heavy trucking is less absurd, but they can already drive for the maximum 11 hours in a 13 hour shift so there is little benefit.
https://en.m.wikipedia.org/wiki/ZeroAvia
They tested a small aircraft for a few minutes at a time (using batteries for flight times that are low for batteries) before crashing it and it’s nowhere near production. Compared to 2 seater electric planes in production for years, or actually serious passenger planes, ZeroAvia is a joke.
There are less clownish hydrogen plane projects, but they are flight testing redundant hardware with full ICE main systems.
Then you’re adding a redundant $5-10million high capacity filling station to the depot cost on top of the other costs. Also you need more depots because hydrogen busses (at least the ones that don’t get at least half their energy from a battery) have lower range than the top end battery busses.
As I said before. Op charging and pantographs are being abandoned already because overnight charging is more than sufficient. 0.7-1kWh per km is perfectly doable and 500kWh batteries even without current gen LMFP (which reduces weight by 30% vs lfp in use now) has no impact on payload, any route that isn’t non-stop can run all day with just a single charge during lunch breK. 1000kWh raises the floor or reduces clearance (but still less than hydrogen) and the bus will run for longer than a driver can legally.
Realistically most batteries are in the 250-350kWh range because more is unnecessary.
The only people still pushing hydrogen busses are platinum miners or oil and gas shills.
Heavy trucking is less absurd, but they can already drive for the maximum 11 hours in a 13 hour shift so there is little benefit.